S-ARQ: A New Truncated ARQ for IP-based Wireless Network

Youngkyu Choi, Seong-Jun Oh, and Sunghyun Choi

Abstract: Automatic Repeat reQuest (ARQ) is a very effective technique against transmission error at the medium access control (MAC) layer. An erroneous MAC protocol data unit (MPDU) can be typically retransmitted within a given limit. In order to improve the IP-level performance, which directly affects the user-perceived quality-of-service (QoS), we propose a new truncated ARQ strategy, called MAC Service Data Unit (MSDU)-based ARQ (S-ARQ), where the finite number of opportunities for retransmissions are shared by multiple fragments out of an IP datagram. We describe how S-ARQ can be implemented in a practical system, and then propose another variant of S-ARQ employing a functionality called early detection of failure. Basically, we evaluate the performance of S-ARQ in two different manners. First, assuming i.i.d. error process, we analyze both the probability of the delivery failure and the average delay of IP datagram. Then, we assess the performance of S-ARQ via simulation over a 2-state Markov channel.

Index Terms: Truncated Automatic Repeat reQuest (ARQ), MAC Service Data Unit (MSDU), MAC Protocol Data Unit (MPDU)

1. Introduction

In recent years, the broadband Internet experience drives the demand for the wireless access to the IP network everywhere even in the mobile environments. In order to meet such fashion, new wireless systems are emerging today [1], [2]. One of the most difficult aspects in building a wireless IP network is how to guarantee a reliable communication over the unreliable wireless medium. In order to overcome the imperfection of the wireless medium, numerous techniques such as channel coding and diversity schemes have been developed.

Automatic Repeat reQuest (ARQ) [3] has been widely employed due mainly to its simplicity. ARQ technique is classified into various types, namely, stop-and-wait (SW) ARQ, go-back-N (GBN) ARQ, and selective repeat (SR) ARQ, depending on how the packets are (re)transmitted [3]. There have been numerous research efforts related with ARQ in the literature. In [4] and [5], the delay statistics of GBN and SR ARQ are analyzed considering the effect of non-zero delay of acknowledgment, respectively. To focus on the theoretical performance achieved by ARQ, they basically assume that the reliability is fully achieved by ARQ, i.e., unlimited retransmissions of a packet are allowed. The cross-layer ARQ performance can also be found in [6]. On the other hand, ARQ is studied to optimize the system-wide performance in conjunction with other underlying techniques, e.g., adaptive modulation, channel coding, and duplexing [7], [8], [9], [10]. Even though it may compromise the average delay due to repeated transmissions of the same information, its remarkable contribution in terms of the error probability reduction makes it an indispensable part of many practical systems. Especially, hybrid ARQ (HARQ), which combines ARQ with (adaptive) channel coding, improves the reliability at the physical layer (PHY) by increasing the received signal to noise ratio (SNR) and lowering the code rate adaptively [11], [12]. In [11], the scheduling algorithm considering the HARQ operation is considered and the several performance metrics in the HARQ-based system are defined with the Markov chain in [12]. In contrast to HARQ, pure ARQ is typically used at the medium access control (MAC) layer or at the data link layer.

The transmission unit at the MAC is a MAC Protocol Data Unit (MPDU) in the MAC’s perspective, and hence the unit of retransmission is also an MPDU. Since typical ARQ schemes limit the maximum retransmission number1 to each MPDU, if an MPDU cannot be successfully transmitted until the maximum limit is reached, then that MPDU is discarded by the MAC. The payload size within an MPDU is often much less than that of the IP datagram [14]. This observation is generally reasonable, especially, for mobile wireless IP networks since the time duration of a transmission unit should be designed as short as possible in order to mitigate the severe channel fading due to the user mobility. Inevitably, an IP datagram should be fragmented into multiple MPDUs. Apparently, there is an exceptional case, e.g., IEEE 802.11 wireless LAN (WLAN), where the whole IP datagram with size over 2,000 bytes might be transmitted without any fragmentation although it also supports the fragmentation functionality at the MAC.

All fragments from the original IP datagram should be transferred without error for the successful re-assembly at the receiver-side MAC. Otherwise, the final delivery failure of a single MPDU (after retransmissions) makes the successful deliveries of other MPDUs useless unless we consider the additional coding scheme above the MAC layer [15], [16]. In this context, we argue that the user-perceived quality-of-service (QoS) is directly affected by the performance measure at the IP level, while it is indirectly affected by that of the link layer or physical layer, assuming that the wireless part is the bottleneck along the end-to-end path. Accordingly, we propose a new ARQ strategy which offers the enhanced IP-level performance compared with the conventional ARQ strategy. Moreover, the proposed scheme

1Note that some technologies such as IEEE 802.16 [13] employ the maximum lifetime instead of the maximum retransmission number. The idea presented in this paper can be also easily applied to such systems.

Manuscript received MONTH, YEAR; approved for publication by NAME OF AE, Division II Editor, Dec 24, 2009.

Youngkyu Choi is with Samsung Electronics, Suwon, Korea.
Seong-Jun Oh is with College of Information and Communication, Korea University, Seoul, Korea.
Sunghyun Choi is with School of Electrical Engineering and the Institute of New Media and Communications (INMC), Seoul National University, Seoul, Korea.

1229-2370/03/$10.00 © 2003 KICS
can be used along with various existing ARQ protocols, e.g., SW, GBN, and SR ARQ.

The rest of the paper is organized as follows: Section II describes our proposed scheme with implementation issues. Section III illuminates the expected benefit, i.e., the robust delivery of IP packet, from the viewpoint of throughput-oriented system. The simulation results based on more realistic channel model are shown and discussed in Section IV. Finally, the paper concludes with Section V.

II. The Proposed ARQ Strategy

Before presenting our approach, we should mention that the IP datagram will be regarded as a MAC Service Data Unit (MSDU) by the MAC. In practical systems, an intermediate layer, e.g., IEEE 802.2 logical link control (LLC), between IP and the MAC layer may attach its own header to the IP datagram, and then forward it to the MAC.

Let us consider the retransmission opportunity as a form of resource to be used. We recognize that the conventional ARQ allocates an equal amount of resource (or equal retransmission opportunity) to each MPDU. However, an MPDU transmitted under a good channel status does not need such excessive resource any more, while other MPDUs transmitted under a poor channel status may require more resources in order to make a complete IP datagram. Therefore, we can figure out the equal resource allocation via the conventional ARQ strategy is not optimal given the total sum of resources available to the MSDU.

Our proposed ARQ strategy is to share the total retransmission opportunities among the MPDUs derived from the same MSDU. To distinguish the proposed scheme from the conventional one, let us refer to the proposed strategy as S-ARQ (the ARQ with the limitation on the number of MSDU transmissions) and to the conventional strategy as P-ARQ (the ARQ with the limitation on the number of MPDU transmissions). In P-ARQ, each MPDU can be retransmitted until a retransmission counter C_{msdu}, which is associated with an MPDU, exceeds the limit. Similarly, in S-ARQ, we consider a retransmission counter C_{msdu}, which is associated with an MSDU. Then, the operational procedure for S-ARQ can be described as follows:

1) When it begins to transmit a sequence of MPDUs derived from a new MSDU, reset C_{msdu}, corresponding to the MSDU, to zero.
2) MPDUs are allowed to be (re)transmitted if C_{msdu} is less than the limit.
3) C_{msdu} is increased by one upon each (re)transmission of an MPDU.
4) If C_{msdu} exceeds the limit, the transmission of the corresponding MSDU is given up, and hence all the pending MPDUs belonging to the same MSDU are discarded.

In fact, we can detect whether attempting to transmit the rest of MPDUs is meaningful earlier before C_{msdu} becomes zero. That is, if the number of pending MPDUs to be transmitted is larger than C_{msdu}, the delivery of the MSDU will fail inevitably. Therefore, we can declare the transmission failure of the IP datagram in advance without wasting the air resource. In order to supplement S-ARQ with this capability, Step 2 is modified as follows:

2) An MPDU is allowed to be (re)transmitted only if the number of remaining MPDUs is fewer than or equal to C_{msdu}.

Let us refer this modified scheme to as ‘S-ARQ w/early drop’ or ‘S-ARQ w/ED’ in short. The modified scheme is expected to reduce the amount of resource consumption without compromising other performances, e.g., goodput and average delay achieved at the IP layer. If the transmission opportunity for an MPDU is given as a form of the maximum life time, a similar statement can also be made by introducing a timer, which notifies the expiration of transmission of each MSDU. However, we will proceed to discuss in terms of the maximum transmission number throughout this paper.

For the implementation issue, our proposed scheme requires that the MAC should know which MSDU a group of MPDUs were generated from. That is, the MAC needs to access the context information of the IP layer. However, this prerequisite is not costly because such information is also required to reassemble the fragmented IP packet even at the receiver. For this reason, we argue that S-ARQ does not require any complex MAC structure or additional information.

III. Performance Analysis

For analytical simplicity, we consider a time-slotted system, where a single MPDU with fixed size is transmitted during a time slot. We assume an IP datagram is fragmented into N MPDUs, and a transmission failure occurs with probability ε independently at each time slot. For the sake of simplicity, we assume that an ACK message is returned without error, and the round trip delay is zero. Accordingly, the sender can determine if its transmission is successful or not immediately after a transmission. When the round trip delay is zero, note that SW, go-back-N, and SR ARQ schemes are identical [5]. Let us consider that the P-ARQ allows an MPDU to be transmitted up to M_P times including the initial trial and $(M_P - 1)$ subsequent retransmissions. In contrast, S-ARQ allows N MPDUs to share the transmission opportunities of $M_S (\geq N)$. In the following, we present the error probability of an IP datagram and the average IP delay in terms of $M_P (M_S)$, N, and ε. We denote the probabilities of a delivery failure of IP datagram achieved by P-ARQ and S-ARQ as $P_{P,f}$ and $P_{S,f}$, respectively. Similarly, the probabilities of a successful delivery of IP datagram are represented by $P_{P,s}$ and $P_{S,s}$, respectively.

In P-ARQ, the probability of a successful transmission of an MPDU can be represented by $1 - \varepsilon^{M_P}$. Accordingly, $P_{P,f}$ is given by

$$P_{P,f} = 1 - (1 - \varepsilon^{M_P})^N. \quad (1)$$

Let us denote by $P_{S,s}(i)$ the probability that N MPDUs are successfully transmitted at the i-th ($i \geq N$) time slot. Accordingly, $P_{S,s} = \sum_{i=N}^{M_S}$ $P_{S,s}(i)$ and $P_{S,s}(i)$ can be represented by

$$P_{S,s}(i) = \binom{i - 1}{N - 1} (1 - \varepsilon)^N \varepsilon^{i-N}, \quad (for \ i \geq N), \quad (2)$$

which is the negative binomial distribution [17]. Then, $P_{S,f}$ is

\footnote{In this paper IP delay means only the transmission delay[3]. Queueing delay or the propagation delay is not considered.}
determined by
\[P_{S,f} = 1 - \sum_{i=N}^{M_S} P_{S,a}(i) = 1 - \sum_{i=N}^{M_S} \left(\frac{i-1}{N-1} \right) (1-\epsilon)^{N-i-N} \] \hspace{1cm} (3)

If an IP datagram divided into \(N \) MPDUs, it can have at most \(NM_P \) transmission opportunities (worst-case delay) in P-ARQ. Therefore, if \(M_S \) is set to \(NM_P \), the following proposition shows that S-ARQ always outperforms P-ARQ in terms of the probability of IP datagram delivery failure.

Proposition 1: When \(M_S = NM_P \), \(P_{S,f} \) is always less than \(P_{P,f} \).

Proof: Consider all the possible outcomes of \(NM_P \) independent transmissions, where we want to successfully transmit \(N \) MPDUs from the same IP datagram. In P-ARQ, an event of successful delivery of an MPDU should occur at least one time within \(M_P \) consecutive transmissions. On the other hand, in case of S-ARQ, it is sufficient that at least \(N \) successful transmissions occur among all \(NM_P \) transmissions. It is clear that any success in P-ARQ is a success in S-ARQ, but not vice versa. \(\square \)

Let us define \(M^*_S \) as \(\min \{ M_S | P_{S,f} \leq P_{P,f}, M_S \in \mathbb{Z} \} \). Then, \(M^*_S \) can be obtained numerically solving the following inequality:
\[M^*_S = \arg \min_{M_S \in \mathbb{Z}} \left\{ \sum_{k=0}^{M_S-N} \left(\begin{array}{c} k+N-1 \, k \\ N \end{array} \right) \epsilon^k \left(\frac{1-\epsilon^{M_P}}{1-\epsilon} \right)^N \right\} \] \hspace{1cm} (4)

In Fig. 1, we compare \(P_{S,f} \) with \(P_{P,f} \) when \(N = 30 \). P-ARQ with \(M_P = 2 \) achieves the probability of a delivery failure of about \(10^{-2} \), when \(\epsilon = 0.03 \) whereas S-ARQ with \(M_S = NM_P = 60 \) yields very low probability (in order of \(10^{-15} \)) as stated by Proposition 1. It is not until \(M_S \) is reduced to \(M^*_S = 33 \) that their performances become alike. In fact, this is the result of Eq. (4) and \(M^*_S \)'s corresponding to other \(M_P \)'s and \(N \)'s are shown in Table 1 as well. At this time, Fig. 2 shows the error performances for various \(N \) values. When \(M_S \) is set to \(NM_P \) for \(M_P = 2 \), P-ARQ achieves lower error probability as \(N \) becomes smaller, but this trend is not valid in S-ARQ.

Table 1. \(M^*_S \)'s depending on \(M_P \) and \(N \) when \(\epsilon = 0.03 \).

<table>
<thead>
<tr>
<th>(M_P/N)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>14</td>
<td>19</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>26</td>
<td>32</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 2. \(M^*_P \) and \(M^*_S \) to achieve \(\xi = 10^{-3} \) when \(\epsilon = 0.03 \).

<table>
<thead>
<tr>
<th>(N)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M^*_P)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(M^*_S)</td>
<td>8</td>
<td>14</td>
<td>19</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>(\frac{M^*_S}{N})</td>
<td>1.6</td>
<td>1.4</td>
<td>1.27</td>
<td>1.25</td>
<td>1.2</td>
<td>1.17</td>
</tr>
</tbody>
</table>

The reason is that setting the retransmission limit of S-ARQ in proportional to \(N \) is quite excessive. In other words, it is interpreted that S-ARQ utilizes the transmission opportunities more efficiently than P-ARQ does. We can learn that the source of improvement is the statistical multiplexing gain in that MPDUs under S-ARQ share more retransmission opportunities than under P-ARQ.

Now we consider that the probability of a delivery failure of IP datagram is specified with \(\xi \). When \(M^*_P \) is required to satisfy the requirement under P-ARQ, it is easily obtained from Eq. (1) as follows:
\[M^*_P = \left\lceil \frac{\log \left(1 - (1-\xi)^{\frac{1}{N}} \right) \epsilon}{\log \epsilon} \right\rceil \] \hspace{1cm} (5)

Once \(M^*_P \) is determined, \(M^*_S \) from Eq. (4) by definition also enables S-ARQ to satisfy the requirement \(\xi \). In Table 2, we enumerate \(M^*_P \) and \(M^*_S \) obtained\(^3\) for given \(N \) (\(N = 5, \ldots, 35 \)) when \(\epsilon = 0.03 \) and \(\xi = 10^{-3} \). We see that \(M^*_S \) increases as \(N \) increases while \(M^*_P \) is fixed to 3 for all \(N \)’s. However, the relative increase of \(M^*_S \), i.e., \(\frac{M^*_S}{N} \), keeps decreasing with \(N \). This result reconfirms that S-ARQ exploits the statistical multiplexing gain more efficiently. Afterward, it is shown that S-ARQ

\(^3\)Note that the frame error rate (FER) is typically provisioned to range from 1% to 5%.
with M_S achieves a smaller average delay than P-ARQ via numerical results.

Next, we compute the average delay of IP datagram. Let us denote the average IP packet delay achieved by P-ARQ and S-ARQ as D_P and D_S, respectively. The average delay is defined by the expected number of time slots consumed to deliver an IP datagram successfully. Therefore, D_P can be written as

$$D_P = \frac{\sum_{i=1}^{N M_P} i P_{P,s}(i)}{1 - P_{P,f}}. \tag{6}$$

Similarly, D_S is written as

$$D_S = \frac{\sum_{i=1}^{M_S} i P_{S,s}(i)}{1 - P_{S,f}}. \tag{7}$$

In order to evaluate Eqs. (6) and (7), we need to derive $P_{P,s}(i)$ while $P_{S,s}(i)$ has been already obtained in Eq. (2).

Before describing how to get $P_{P,s}(i)$, we replace its notation with $P_{P,s}^N(i)$ to specify the number of MPDUs explicitly. When an IP datagram with N MPDUs is successfully delivered at the i-th transmission, there exist many combinations of the time slots occupied by each individual MPDUs, respectively. We represent possible combinations by N-dimensional vector (n_1, n_2, \ldots, n_N) where $n_j (1 \leq n_j \leq M_P)$ is the number of time slots used to deliver the j-th MPDU. Denote N_i as the set of all vectors satisfying $\sum_{j=1}^{N} n_j = i$. Defining $S(n_j)$ as $\varepsilon^{n_j-1}(1-\varepsilon)$, $(1 \leq n_j \leq M_P)$, $P_{P,s}(i)$ can be computed as

$$P_{P,s}(i) = \sum_{(n_1, n_2, \ldots, n_N) \in N_i} \prod_{j=1}^{N} S(n_j). \tag{8}$$

Eq. (8) can be computed recursively as follows. Let us assume that it takes k time slots to transmit the N-th MPDU successfully. Since $(N-1)$ MPDUs should have been delivered during $(i-k)$ slots, k should be less than or equal to the minimum of $i-(N-1)$ and M_P. Accordingly, $P_{P,s}^N(i)$ can be expressed using $S(k)$ and $P_{P,s}^{k-1}(i-k)$ as

$$P_{P,s}^N(i) = \sum_{k=1}^{\min\{M_P, i-(N-1)\}} S(k) P_{P,s}^{k-1}(i-k). \tag{9}$$

Using Eq. (9), we can compute the probability, $V(x, i)$ that $x \leq x \leq N$ MPDUs are successfully delivered during i time slots. $V(x, i)$ is represented by $x \times i$ matrix, and each element has the value according to

$$V(x, i) = \begin{cases} S(i), & \text{for } x = 1, 1 \leq i \leq M_P, \\ \sum_{k=1}^{\min\{M_P, i-(x-1)\}} S(k) V(x-1, i-k), & \text{for } 2 \leq x \leq N, \ x \leq i \leq x M_P, \\ 0, & \text{otherwise}. \end{cases} \tag{10}$$

We consider the average delay of successfully delivered IP datagrams without the application layer retransmission. Therefore, strictly speaking, the average delay is a conditional expectation conditioned on the successful delivery of an IP datagram. $(1 - P_{P,f})$ and $(1 - P_{S,f})$ in the denominators of (6) and (7) are the normalization factors to take the probability of an IP datagram’s successful delivery into consider.

Recursive computation using Eq. (10) yields $P_{P,s}^N(i)$ as $V(N, i)$. Finally, according to Eq. (6), D_P is written by

$$D_P = \frac{\sum_{i=1}^{N M_P} i V(N, i)}{1 - (1 - P_{P,f})^N}. \tag{11}$$

Similarly, D_S is represented by using Eqs. (2) and (3) as

$$D_S = \frac{\sum_{i=1}^{M_S} i V(N, i)}{1 - (1 - P_{S,f})^N}. \tag{12}$$

Proposition 2: When M_S is large, D_S converges to $\frac{N}{1 - \varepsilon}$.

Proof: Using the identity relation of $\binom{k}{i} = \binom{k}{i-1} + \binom{k-1}{i-1}$ and replacing $(i - N)$ with k, Eq. (12) is rewritten as

$$D_S = \frac{\varepsilon \sum_{k=0}^{M_S-N} \binom{k+N-1}{k} k k^{k-1}}{\sum_{k=0}^{M_S-N} \binom{k+N-1}{k} k^{k-1}} + N. \tag{13}$$

Since $\binom{k+N-1}{k} = (-1)^{k-1} \binom{-N}{k}$, the denominator of Eq. (13) is represented as $\lambda = \sum_{k=0}^{M_S-N} (-\varepsilon)^k$. When $M_S - N$ is quite large, $\lambda \rightarrow (1 - \varepsilon)^{-N}$. Since $\sum_{k=0}^{M_S-N} (-k^{k-1})$ is the same as $\frac{d\lambda}{d\varepsilon}$, $D_S \rightarrow \frac{N}{1 - \varepsilon}$.

Fig. 3 shows the average delay of IP datagram delivery under both P-ARQ and S-ARQ. While S-ARQ with $M_S = 60$ achieves very low error probability in Fig. 1, the average delay is longer than that achieved by P-ARQ. Also, the result coincides at every ε with the asymptotic delay given by Proposition 2. However, we see that S-ARQ with M_S accomplishes lower delay than P-ARQ. Recall that P-ARQ and S-ARQ with M_S yield the same performance with respect to the delivery failure probability. Indeed, M_S is optimal in the sense that it minimizes D_S while satisfying $P_{S,f} \leq P_{P,f}$ because D_S increases with M_S.

IV. Simulation Results

A. Simulation Model

So far, we have assumed that transmission failures of MPDU occur independently with probability ε. However, the wireless channel is characterized by bursty errors. For the wireless channel model, we consider a block fading model, known as
Gilbert model [18], where the transmission is always successful at state 0 and the transmission always fails at state 1. This channel model is fully characterized by the transition matrix $T = \{t_{ij}\}, i, j \in \{0, 1\}$. The steady state probability of transmission failure is given by $\epsilon = t_{01}/(t_{10} + t_{01})$, and $B = 1/t_{10}$ has the meaning of an average burst error length. The channel state is assumed not to vary during a time slot, but it can transit to the other state according to T at a slot boundary.

The simulation scenario proceeds as follows: the sender keeps sending IP datagrams with the size of N MPDUs for 500,000 time slots. During a simulation, we keep track of three different variables:

1) $\text{msdu} _\text{cnt}$: whenever the sender begins to transmit a new IP datagram, $\text{msdu} _\text{cnt}$ is increased by one.

2) $\text{drop} _\text{msdu}$: when it fails to deliver an IP datagram, $\text{drop} _\text{msdu}$ is increased by one.

3) $\text{success} _\text{time}$: whenever an IP datagram is successfully delivered, accumulate the number of time slots used for the IP datagram to $\text{success} _\text{time}$.

Using these variables, we build three different metrics to assess the performance of ARQ:

1) The probability of a delivery failure of IP datagram: $\text{Prob. of delivery failure of IP datagram} = \frac{\text{drop} _\text{msdu}}{\text{msdu} _\text{cnt}}$.

2) The average delay: $\text{Prob. of delivery failure of IP datagram} = \frac{\text{success} _\text{time}}{\text{msdu} _\text{cnt} \times \text{drop} _\text{msdu}}$.

3) The average goodput: $\text{Prob. of delivery failure of IP datagram} = \frac{\text{msdu} _\text{cnt} \times \text{drop} _\text{msdu}}{500000}$.

All performance measures are obtained via averaging over more than 40 simulation runs, and for each run, the initial state of the channel is assumed to be state 0.

B. Performance Evaluation

Fig. 4 shows the probability of a delivery failure of IP datagram compared with the analytical performance obtained in Section III. The performance of P-ARQ is obtained for $M_P = 2$ and M_S's in Table 1 are used for S-ARQ. We observe that the result from simulation is worse than the analytical result due to the burst of channel errors. S-ARQ with $M_S = 60$ achieves the error probability in the order of 10^{-4} though its analytical result reaches as the order of 10^{-15} as shown in Fig. 3.

Fig. 5 shows the effect of N on the probability of delivery failure. For S-ARQ, we set M_S to $2N$ when $M_P = 2$ is used for P-ARQ. We see that as the length of IP datagram decreases, P-ARQ achieves smaller probability of delivery failure. However, this trend is reversed in S-ARQ and this is identical with the analytical result shown in Fig. 2. This means that $M_S = 2N$ is quite excessive for S-ARQ though it yields the same worst case delay as P-ARQ with $M_P = 2$.

At this time, Fig. 6 shows the impact of B. For both P-ARQ and S-ARQ, as the channel error process becomes more bursty, i.e., from $B = 2$ to $B = 5$, the probability of delivery failure increases.

Lastly, we evaluate the average goodput achieved by P-ARQ and S-ARQ, respectively. In order to compare the goodput performance achieved by each ARQ scheme, the probability of delivery failure should be made identical. However, it is quite difficult since M_S and M_P are constrained to be integer. Therefore, we compare the achievable region consisting of the average goodput and the average IP packet delay. The average goodput vs. average IP packet delay is plotted in Fig. 7. Firstly, we observe that S-ARQ achieves a higher goodput than P-ARQ for a
the average goodput. The simulation result shows that S-ARQ achieves a better trade-off between the reliability and the average delay compared with P-ARQ, a conventional ARQ scheme.

ACKNOWLEDGMENTS

This work was supported by the IT R&D program of MKE/KEIT [2009-F-044-01, Development of cooperative operation profiles in multicell wireless systems].

REFERENCES

Youngkyu Choi has been with Samsung Electronics, Suwon, Korea as a senior engineer since March 2009. He received the B.S. (magna cum laude) and Ph.D degrees all in the School of Electrical Engineering from Seoul National University, Seoul, Korea, in 2003 and 2009, respectively. His current research interests mainly focus on developing the practical algorithms required to support various QoS applications and Self-Organizing Network (SON) in mobile WiMAX system. He received the Best Paper Award at IEEE WoWMoM 2008, Newport Beach, US and the Bronze Award at the third IEEE Student Paper Contest hosted by IEEE Seoul Section in 2007. He also received the Bronze, Silver, and Bronze Awards at the Samsung Humantech Thesis Prize in 2009, 2008, and 2005, respectively.

Seong-Jun Oh is an assistant professor at the Department of Computer and Communications Engineering, Korea University, Seoul, Korea. Before joining Korea University in September 2007, he was with Ericsson Wireless Communication, San Diego, California, USA as a senior engineer from September 2000 to March 2003 and with Qualcomm CDMA Technologies (QCT), San Diego, California, USA as a staff engineer from September 2003 to August 2007. He received his B.S. (magna cum laude) and M.S. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1991 and 1995, respectively, and received Ph.D. at the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor in September 2000. He served for Korean Army during 1993-1994. His current research interests are in the area of wireless/mobile networks with emphasis on the next-generation (4G) cellular networks, resource allocation, and physical-layer modem implementation. While he was with Ericsson Wireless Communication, he has been an Ericsson representative for WG3 (physical layer) of 3GPP2 standard meeting. While in QCT, he has developed CDMA modems in ASIC for base station and mobile station. Currently, he is a vice-chair of TTA PG 707, the Korean evaluation group registered in ITU-R, where he is in charge of performance evaluations of LTE-Advanced and IEEE 802.16m systems, submitted as an IMT-Advanced technologies in ITU-R WP5D. He has received the Seoktop Teaching Award from the College of Information and Communication, Korea University for outstanding lectures in fall semester of 2007. He was a recipient of the Korea Foundation for Advanced Studies (KFAS) Scholarship 1997-2000.

Sunghyun Choi is currently a visiting associate professor at the Electrical Engineering department, Stanford University, USA, and an associate professor at the School of Electrical Engineering, Seoul National University (SNU), Seoul, Korea. Before joining SNU in September 2002, he was with Philips Research USA, Briarcliff Manor, New York, USA as a Senior Member Research Staff and a project leader for three years. He received his B.S. (summa cum laude) and M.S. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992 and 1994, respectively, and received Ph.D. at the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor in September, 1999.

His current research interests are in the area of wireless/mobile networks with emphasis on wireless LAN/MAN/PAN, next-generation mobile networks, mesh networks, cognitive radios, resource management, data link layer protocols, and cross-layer approaches. He authored/coauthored over 140 technical papers and book chapters in the areas of wireless/mobile networks and communications. He has co-authored (with B. G. Lee) a book “Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi,” Artech House, 2008. He holds 19 US patents, 10 European patents, and 11 Korea patents, and has tens of patents pending. He has served as a General Co-Chair of COMSWARE 2008, and a Technical Program Committee Co-Chair of ACM Multimedia 2007, IEEE WoWMoM 2007 and IEEE/Create-Net COMSWARE 2007. He was a Co-Chair of Cross-Layer Designs and Protocols Symposium in IWCMC 2006, 2007, and 2008, the workshop co-chair of WILLOPAN 2006, the General Chair of ACM WMASH 2005, and a Technical Program Co-Chair for ACM WMASH 2004. He has also served on program and organization committees of numerous leading wireless and networking conferences including IEEE INFOCOM, IEEE SECON, IEEE MASS, and IEEE WoWMoM. He is also serving on the editorial boards of IEEE Transactions on Mobile Computing, IEEE Wireless Communications, ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), Journal of Communications and Networks (JCN), Computer Networks (ComNet), and Computer Communications (ComCom). He has served as a guest editor for IEEE Journal on Selected Areas in Communications (JSAC), IEEE Wireless Communications, Pervasive and Mobile Computing (PMC), ACM Wireless Networks (WINET), Wireless Personal Communications (WPC), and Wireless Communications and Mobile Computing (WCMB). He gave a tutorial on IEEE 802.11 in ACM MobiCom 2004 and IEEE ICC 2005. From 2000 to 2007, he was a voting member of IEEE 802.11 WLAN Working Group.

He has received a number of awards including the Young Scientist Award awarded by the President of Korea (2008); IEK/IEEE Joint Award for Young IT Engineer (2007); the Outstanding Research Award (2008) and the Best Teaching Award (2006) both from the College of Engineering, Seoul National University; the Best Paper Award from IEEE WoWMoM 2008; and Recognition of Service Award (2005, 2007) from ACM. Dr. Choi was a recipient of the Korea Foundation for Advanced Studies (KFAS) Scholarship and the Korean Government Overseas Scholarship during 1997-1999 and 1994-1997, respectively. He is a senior member of IEEE, and a member of ACM, KICS, IEEE, KIISE.